首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52796篇
  免费   7103篇
  国内免费   3382篇
电工技术   5069篇
综合类   3996篇
化学工业   12684篇
金属工艺   4131篇
机械仪表   2864篇
建筑科学   4130篇
矿业工程   763篇
能源动力   4590篇
轻工业   2106篇
水利工程   683篇
石油天然气   2004篇
武器工业   851篇
无线电   4780篇
一般工业技术   7750篇
冶金工业   1753篇
原子能技术   806篇
自动化技术   4321篇
  2024年   156篇
  2023年   1107篇
  2022年   1663篇
  2021年   2066篇
  2020年   2316篇
  2019年   2018篇
  2018年   1860篇
  2017年   2281篇
  2016年   2305篇
  2015年   2339篇
  2014年   3205篇
  2013年   3669篇
  2012年   3777篇
  2011年   3950篇
  2010年   2905篇
  2009年   3086篇
  2008年   2623篇
  2007年   3316篇
  2006年   3128篇
  2005年   2414篇
  2004年   2066篇
  2003年   1729篇
  2002年   1563篇
  2001年   1291篇
  2000年   1052篇
  1999年   781篇
  1998年   700篇
  1997年   645篇
  1996年   553篇
  1995年   461篇
  1994年   372篇
  1993年   295篇
  1992年   302篇
  1991年   259篇
  1990年   214篇
  1989年   173篇
  1988年   130篇
  1987年   84篇
  1986年   75篇
  1985年   76篇
  1984年   74篇
  1983年   51篇
  1982年   58篇
  1981年   32篇
  1980年   18篇
  1979年   7篇
  1977年   4篇
  1975年   4篇
  1959年   7篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
91.
In the present work, thermal performance of a new modified baseboard radiator is investigated experimentally based on the European Standard EN-442. Temperature distribution and thermal comfort conditions of the floor heating system and panel radiator is compared with the present system numerically. To validation of the simulation results, a comparison has been made between the simulation and the experimental obtained results. Comparison shows that there is a good agreement between them. The heat output rate of the new system increased about 46.06% compared with conventional baseboard radiant model and also the baseboard heating system is capable of providing better thermal comfort conditions than two other systems. Energy consumption in three systems is investigated experimentally by smart temperature control mechanism. Results show that energy consumption in the baseboard radiant is 83.03% and 55.96% lower than floor heating system and panel radiator, respectively.  相似文献   
92.
Utilizing natural waste as carbon source to prepare porous carbon with ultrahigh surface area and developing a facile protocol to synthesize supported metal nanoparticles toward an efficient formic acid (FA) decomposition are vital but remains challenging. Here, discarded ginkgo leaves were utilized as carbon source to prepare ginkgo leaf-derived porous carbon (GLPC) with an ultrahigh surface area of 3851 m2/g. Based on the as-prepared nitrogen-doped GLPC (N-GLPC) after “soft” nitriding, a facile solid-state reduction strategy with mortar-pestle grinding and without the use of any organic solvent and stabilizing ligand was developed to synthesize ultrafine and well-distributed Pd nanoparticles (NPs) with a diameter of 2.7 ± 0.7 nm. The “soft” nitriding temperature and addition of base during preparation played vital roles in the activity of the fabricated catalysts. The Pd/N-GLPC-350 exhibited the highest catalytic activity toward decomposing FA, achieving a high turnover frequency of 2952 h?1 at 333 K. The Pd/N-GLPC-350 was quite stable and could be reused at least five times without evident activity loss. This study provides a facile solid-state reduction protocol with mortar-pestle grinding to synthesize metal NPs by using natural waste-derived porous carbon as support toward efficient FA decomposition.  相似文献   
93.
Ru nanoparticles supported on SiO2 microspheres (Ru/SiO2-GUS) were prepared by the glucose-urea-metallic salt method and applied in the decomposition of ammonia. In the glucose-urea-metallic salt method, glucose as the carbon template plays a significant role in the formation of diffusion-beneficial structural properties of Ru/SiO2-GUS, and also induceds the modification of the electronic state of Ru. Ru/SiO2-GUS exhibited higher catalytic activity compared with the catalyst prepared with the impregnation method. The catalytic performance of Ru/SiO2-GUS was further enhanced with the addition of either K or Cs——the addition order and amount strongly affecting the catalytic performance. When the ratio of K/Cs to Ru is 2, the alkali metal (KOH/CsOH) solution is added in the homogeneous solution of glucose, urea, RuCl3 and the colloidal silica, the promotion effect of K/Cs is the strongest, particularly under lower reaction temperatures. However, the promotion effects of K and Cs are different as reveled by the combined results of H2-TPR, XPS and NH3-TPSR. More NH3 can be absorbed on K–Ru/SiO2-GUS and the electron density of Ru decreased. By contrast, more metallic Ru formed on Cs–Ru/SiO2-GUS, facilitating N2 recombination.  相似文献   
94.
Thermal energy storage systems based on metal hydrides can be a solution for preheating fuel cells (FCs). They can provide thermal energy at temperatures below −20 °C during startup, while heat at 50 °C during operation is sufficient for regeneration. The challenge of such a system in mobile applications is the final weight specific thermal power. In this study, a reactor design based on additive manufacturing techniques for ~300 g of metal hydride is presented. Here, a reactor (passive) to hydride (active) mass ratio of 0.97 is realized, still reaching high weight specific thermal power of up to 2.1 kW/kgMH at −20 °C and 8 bar (LmNi4.91Sn0.15). Considering the example of preheating a FC from −20 °C in ~120 s, the performance of LaNi5 and LmNi4.91Sn0.15 is studied. While LaNi5 requires higher regeneration temperatures than LmNi4.91Sn0.15 (>40 °C compared to >20 °C), its performance is less sensitive to operative variations due to its nearly ideal thermodynamic characteristic.  相似文献   
95.
To evaluate the effects of irradiation and thermal treatments on the quality characteristics of the vacuum-packaged low-salted fermented fish (Suanyu) during 90-day storage, thermal-treated group (TTG), irradiated-treated group (ITG) and non-treated group (CG) were prepared. The results showed that total viable counts reduced by 4.49 and 4.67 log CFU/g after thermal and irradiation treatments, respectively, and no coliforms and pseudomonas growth occurred during storage. Compared with CG, lower levels in L*, springiness, chewiness of TTG and higher levels in L*, b* and chewiness of ITG were detected after 90-day storage. Total biogenic amines content was significantly reduced in ITG compared with CG and TTG (P < 0.05). Both irradiation and thermal treatments have the potential to maintain quality of Suanyu during room storage. Compared with irradiation, thermal treatment could better stabilise the free amino acids and volatile compounds of Suanyu during room storage, but had some negative effects on texture quality.  相似文献   
96.
Occupants’ satisfaction had been researched independently related to thermal and visual stimuli for many decades showing among others the influence of self-perceived control. Few studies revealed interactions between thermal and visual stimuli affecting occupant satisfaction. In addition, studies including interactions between thermal and visual stimuli are lacking different control scenarios. This study focused on the effects of thermal and visual factors, their interaction, seasonal influences, and the degree of self-perceived control on overall, thermal, and visual satisfaction. A repeated-measures laboratory study with 61 participants running over two years and a total of 986 participant sessions was conducted. Mixed model analyses with overall satisfaction as outcome variable revealed that thermal satisfaction and visual satisfaction are the most important predictors for overall satisfaction with the indoor environment. Self-perceived thermal control served as moderator between thermal satisfaction and overall satisfaction. Season had slight influence on overall satisfaction. Random effects explained the highest amount of variance, indicating that intra- and interindividual differences in the ratings of satisfaction are more prevalent than study condition. Future building design and operation plans aiming at a high level of occupant satisfaction should consider personal control opportunities and take into account the moderating effect of control opportunities in multimodal interactions.  相似文献   
97.
Polyamide‐6 (PA‐6)/boehmite alumina (BA) nanocomposites were prepared via direct melt compounding. Structural, thermal and dielectric properties of ‘as‐received’ (including moisture) and ‘dried’ (thermally treated) specimens were examined. The BA nanofiller was homogeneously dispersed in the PA‐6 matrix. XRD and FTIR revealed that crystallization of PA‐6 in the γ phase was favoured over α phase with increasing BA content. The crystallinity index (CI) and the percentage of α and γ phases were also evaluated. Dried specimens exhibited a lower CI than as‐received specimens while the CI decreased with the addition of filler. Broadband dielectric spectroscopy revealed the presence of γ, β and α relaxations, the Maxwell–Wagner–Sillars effect and the contribution of conductivity relaxation in the as‐received samples. The drying procedure unmasked a double feature of both β and α modes. The results of the complementary techniques were analysed and the effects of moisture and/or the incorporation of BA nanofiller on the microstructure of the PA‐6 matrix are disclosed. © 2019 Society of Chemical Industry  相似文献   
98.
A key problem in CO_2 conversion by thermal plasma is suppressing the inverse reactions,CO?+?O?→?CO_2 and CO?+?0.5O_2?→?CO_2, to simultaneously obtain high CO yield and energy efficiency. This can be done by quickly quenching the decomposed gas or rapidly taking away free oxygen from decomposed gas. In this paper, experiments of CO_2 conversion by thermal plasma with carbon as a reducing agent are presented. Carbon quickly devoured free oxygen in thermal plasma decomposed gas, and not only is the inverse reaction completely suppressed, but the discharge energy to form oxygen atoms, oxygen molecular, and thermal energy is also reused.A CO_2 conversion rate of 67%–94% and the corresponding electric energy efficiency of about 70% are achieved, both are much higher than that seen so far by other plasma implementations.  相似文献   
99.
碳纤维复合材料薄壁圆筒为各向异性导热,其轴向导热系数是筒体温度场理论计算、成型工艺优化的重要参数。碳纤维复合材料圆筒由于较小的截面面积给筒体加热、热量有效传递带来了较大困难。本文以平板材料导热系数的稳态法测试国家标准为基础,基于傅里叶一维稳态导热原理,设计了一套用于薄壁圆筒轴向导热系数测试的装置,采用双试件对称加热、辐射换热防护及热对流环境控制等实现了热量沿筒体轴向的有效传导,利用该装置对导热系数已知的铝筒进行测试,验证了该装置设计的可行性,得到了碳纤维复合材料薄壁圆筒的轴向导热系数为(4.60±0.13) W/(m•K)。  相似文献   
100.
张坤  陶俊  王晓峰  常静  毕福强  姜帆  杨雄 《含能材料》2019,27(11):908-914
为详细了解高氯酸铵(AP)对5,5'-联四唑-1,1'-二氧二羟铵(HATO)热分解影响的机制,采用热重-质谱-傅里叶红外光谱(TG-MS-FTIR)联用技术、差示扫描量热法(DSC)、傅里叶红外光谱(FTIR)方法,对HATO和HATO/AP共混物的热分解特性、气体产物以及凝聚相变化进行了研究。结果表明,HATO具有两个连续热分解阶段,HATO/AP共混物则有3个热分解阶段;HATO、AP共混后,HATO使得AP熔融峰消失,AP可使HATO的热分解初始温度提前,热分解时间延长且不影响分解完全性;HATO热分解气体产物有CO_2、N_2O、HCN、NH_3、NO、N_2、H_2O,而HATO/AP共混物热分解产生气体主要有N_2、CO_2、N_2O、HCN、NH_3、H_2O、HCN、NO、HCl、NOCl;另外,采用等转化率法计算HATO和HATO/AP共混物四唑环基团的活化能分别为53.38 kJ·mol~(-1)和60.69 kJ·mol~(-1);通过对比HATO和HATO/AP共混物热分解特性以及凝聚相特征基团的变化,阐释了AP使HATO热分解温度提前的机理很可能是:AP的铵根离子与HATO之间发生了质子转移;推测AP导致HATO热分解时间延长的原因为:HATO/AP共混物产生的NH_3与热分解中间体1,1'-二羟基-5,5-联四唑(BTO)反应生成5,5'-联四唑-1,1'-二氧铵盐(ABTOX)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号